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Abstract

Structural magnetic resonance imaging (sMRI) can capture the spatial patterns of

brain atrophy in Alzheimer's disease (AD) and incipient dementia. Recently, many

sMRI-based deep learning methods have been developed for AD diagnosis. Some of

these methods utilize neural networks to extract high-level representations on the

basis of handcrafted features, while others attempt to learn useful features from

brain regions proposed by a separate module. However, these methods require con-

siderable manual engineering. Their stepwise training procedures would introduce

cascading errors. Here, we propose the parallel attention-augmented bilinear net-

work, a novel deep learning framework for AD diagnosis. Based on a 3D con-

volutional neural network, the framework directly learns both global and local

features from sMRI scans without any prior knowledge. The framework is lightweight

and suitable for end-to-end training. We evaluate the framework on two public

datasets (ADNI-1 and ADNI-2) containing 1,340 subjects. On both the AD classifica-

tion and mild cognitive impairment conversion prediction tasks, our framework

achieves competitive results. Furthermore, we generate heat maps that highlight dis-

criminative areas for visual interpretation. Experiments demonstrate the effective-

ness of the proposed framework when medical priors are unavailable or the

computing resources are limited. The proposed framework is general for 3D medical

image analysis with both efficiency and interpretability.
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1 | INTRODUCTION

Alzheimer's disease (AD), the most common form of dementia, affects

many millions of people worldwide (Livingston et al., 2017). Since

there is currently no cure for AD and prompt treatment might delay

disease progression (Livingston et al., 2017; Weimer & Sager, 2009),

early diagnosis is of great importance. Brain atrophy is an important

biomarker of both established AD and mild cognitive impairment

(MCI; Jack et al., 2010; Vemuri et al., 2009), which is known as the

transitional stage between normal cognition and dementia. Structural

magnetic resonance imaging (sMRI) is able to capture the brain

changes before the onset of dementia (Ewers, Sperling, Klunk,

Received: 1 August 2021 Revised: 15 September 2021 Accepted: 28 September 2021

DOI: 10.1002/hbm.25685

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2021;1–13. wileyonlinelibrary.com/journal/hbm 1

https://orcid.org/0000-0002-7783-3073
mailto:tao.liu@buaa.edu.cn
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/hbm
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhbm.25685&domain=pdf&date_stamp=2021-10-22


Weiner, & Hampel, 2011; Jack et al., 1997). As a result, many sMRI-

based computer-aided diagnosis (CAD) algorithms have been devel-

oped for diagnosis of AD and prediction of MCI-to-AD conversion

(Bron et al., 2015; Eskildsen et al., 2013; Khvostikov, Aderghal,

Benois-Pineau, Krylov, & Catheline, 2018; Korolev, Safiullin, Belyaev,

& Dodonova, 2017; Lian, Liu, Zhang, & Shen, 2018; Lin et al., 2018;

Liu, Zhang, Adeli, & Shen, 2018; Liu, Zhang, & Shen, 2016; Liu, Zhang,

Yap, & Shen, 2017; Moradi et al., 2015; Rathore, Habes, Iftikhar,

Shacklett, & Davatzikos, 2017; Suk et al., 2014; Tong et al., 2017;

Vieira, Pinaya, & Mechelli, 2017; Zhang, Gao, Gao, Munsell, &

Shen, 2016).

Existing CAD methods can be categorized into conventional

learning-based methods and deep learning-based methods. Conven-

tional learning-based methods have two independent steps, hand-

crafted feature extraction and classifier construction (Rathore et al.,

2017). Davatzikos, Bhatt, Shaw, Batmanghelich, and Trojanowski

(2011) trained a support vector machine (SVM) classifier with sMRI-

based biomarkers and cerebrospinal fluid biomarkers and used it to

predict which MCI patients would progress to AD. Eskildsen et al.

(2013) measured cortical thickness in selected regions of interest and

used the measurements to train a linear discriminant analysis (LDA)

classifier for AD prediction. The feature design of conventional

learning-based methods relies on considerable and costly domain

expertise. Also, separating feature design from classifier construction

could cause cascading errors in the model, since the handcrafted fea-

tures may not optimally represent the data.

Due to its strength in automatically extracting complex patterns,

deep learning has now been employed to solve many problems in

computer vision, natural language processing (LeCun, Bengio, &

Hinton, 2015), and neuroimaging (Vieira et al., 2017; Zaharchuk,

Gong, Wintermark, Rubin, & Langlotz, 2018). Among the neuroimag-

ing studies, Ding et al. (2019) utilized a pre-trained convolutional neu-

ral network (CNN) for AD diagnosis; Spasov et al. (2019) developed a

CNN that learned from sMRI, demographic, neuropsychological, and

genetic data for predicting MCI to AD conversion. Suk et al. (2017)

first trained multiple sparse regression models with manually

engineered features and then built a deep network on the basis of the

regression responses and clinical scores for diagnosis.

Although existing deep learning-based CAD methods have pro-

duced impressive results, they may still encounter some inherent limi-

tations: (a) the risk of overfitting, (b) the difficulty in capturing

discriminative patterns, and (c) the requirement for extra annotation

or prior knowledge. By simply stacking neural layers, CNNs could cap-

ture representative features in a large receptive field (Luo, Li,

Urtasun, & Zemel, 2018). Meanwhile, the CNNs are exposed to

increased risks of overfitting as more parameters are employed. Con-

sidering the relatively small sample sizes of most neuroimaging stud-

ies, the deep learning-based CAD models are easily troubled with

overfitting issue, which leads to inferior test results. Furthermore,

early diagnosis is challenging, because the spatial patterns of brain

atrophy in MCI and AD are subtle and diffuse (Driscoll et al., 2009).

Existing CAD methods require extra guidance to better identify the

differences between different clinical groups. For example, some

methods model patterns of spatial atrophy conditioned on detected

landmarks (Liu et al., 2018) or predefined anatomical landmarks (Lian

et al., 2018). These methods require an extra landmark detection

module or a location proposal module, which was designed in an ad-

hoc manner and cannot be jointly optimized with the network, thus

constraining their applications.

To solve the above problems, we propose a deep learning frame-

work for sMRI-based AD diagnosis. The framework accepts 3D sMRI

scans as input and outputs diagnostic labels. First, we use a light-

weight 3D convolutional network as the primitive feature extractor.

To tackle the trade-off between better representation learning and

increased risk of overfitting, we devise a parallel attention-augmented

bilinear network (pABN), which extract fine-grained representations

with only a small parameter overhead. Specifically, the parallel

attention-augmented blocks model long-range interdependencies and

asymmetrically project the learned features to lower dimensions.

Finally, the compressed features of the parallel branches are com-

bined using bilinear pooling to model localized feature interactions. A

schematic of the proposed framework is shown in Figure 1. In the

experiments, we evaluate our framework on two independent

datasets from Alzheimer's Disease Neuroimaging Initiative (ADNI;

Jack Jr. et al., 2008) for AD classification and MCI conversion

prediction.

The main contributions are summarized as follows:

F IGURE 1 Architecture of the proposed parallel attention-
augmented bilinear network (pABN). “pA” refers to the parallel
attention-augmented blocks
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• We devise a lightweight and effective neural network for AD diag-

nosis and MCI conversion prediction. The network achieves com-

petitive results with a small parameter overhead.

• Unlike the previous works that require either feature extraction or

discriminative region proposals before the construction of the main

network, our proposed framework is an integration of automatic

feature extraction, classification, and discriminative localization.

• The proposed framework employs an asymmetrically parallel structure

to extract better representations from whole-brain structural MRI

scans, and does not need any prior knowledge for feature learning.

2 | METHOD

We next introduce the proposed pABN. First, we introduce the whole

network framework and the role of each component. Then, we detail

the training procedure and implementation.

2.1 | pABN

Taking a 3D brain image as input, a backbone network first extracts

primitive features, which are then passed to parallel attention-

augmented blocks for extracting long-range interactions. To further

refine local features, the learned feature maps are fused with bilinear

pooling. Finally, a fully connected layer with two output units is used

as the classifier. The network architecture (Figure 1) is described in

detail below.

2.1.1 | Backbone network

The backbone network is based on ResNet (He, Zhang, Ren, &

Sun, 2016a) using residual units proposed in (He, Zhang, Ren, &

Sun, 2016b). The network architecture consists of a root con-

volutional layer and three residual units. The root convolutional layer

accepts the 3D images, with 3D kernel of size 3 � 3 � 3 and 16 out-

put channels. The next three residual units have the same structure

except for the output channels. To cover regions of interest with a

sufficiently large receptive field, we choose to use a large kernel size

for convolutions. In addition, we use strided convolutions to down-

sample the features. Feature down-sampling is achieved via strided

convolutions. No average-pooling or max-pooling layer is used. Spe-

cifically, each residual unit has two convolutional layers: the first layer

has kernels of size 4 � 4 � 4 with stride 2; the next layer has kernels

of size 1 � 1 � 1 with stride 1. The number of output channels is dou-

bled for the first layer while unchanged for the second layer. The layer

with kernel size 4 � 4 � 4 symmetrically applies zero paddings to

ensure that the output feature map is exactly half the size of the input

feature map. Before each convolutional layer, a batchnorm (BN) layer

(Ioffe & Szegedy, 2015) and a rectified linear unit (ReLU) (Glorot,

Bordes, & Bengio, 2015) are cascaded. After three residual units, the

feature map is down-sampled eight times to 18 � 22 � 18. Then,

another combination of BN and ReLU is inserted before the next par-

allel attention-augmented blocks.

2.1.2 | Parallel attention-augmented blocks

Most existing convolutional neural networks are constructed by seri-

ally stacking convolutional layers. Although a network's capacity gen-

erally increases as the number of layers increases, the network also

tends to overfit a small dataset because of huge amount of parame-

ters. In our framework, we devise the parallel attention-augmented

blocks (pA-blocks) to solve this problem. Our pA-blocks are based on

the double attention block (A2-block) proposed by Chen, Kalantidis, Li,

Yan, and Feng (2018), which aims to effectively capture the global

information and distribute it to every location in a two-step attention

manner. In this way, each location in the feature map receives cus-

tomized global information as complements, thereby enabling the net-

work to learn more complex relationships. Different from the original

A2-block, we modify it to facilitate a parallel structure with augmented

representation spaces and less trainable parameters.

The structure of the modified A2-block is shown in Figure 2.

X �ℝd�h�w�k denotes the input feature for the 3D convolutional layer,

where k denotes the number of channels, and d,h,w are the spatial

dimensions. The block contains three 3D convolutional layers with

1�1�1 kernel and m output channels. After necessary reshaping

and transposing operations, we have feature maps generated by con-

volutional layers: A¼ a1,…,adhw½ ��ℝm�dhw; B¼ b1,…,bm
� �

�ℝm�dhw ,

where each bi is a dhw-dimensional row vector, and V ¼
v1,…,vdhw½ ��ℝm�dhw: In the first attention step, global representations

are gathered effectively by second-order attention pooling. G¼
g1,…,gm½ ��ℝm�m is the output of the first attention step. In the sec-

ond attention step, global features are adaptively distributed to each

spatial location. Z¼ z1,…,zdhw½ ��ℝm�dhw is the output of the second

attention step. Specifically:

F IGURE 2 A flowchart showing the modified double attention
block used in the present study. Specifically, “m” represents number
of channels of the convolutional layer, and “7,128” represents the
product of the spatial dims of the feature map
(i.e., dhw = 18 � 22 � 18 = 7,128); “MatMul” represents matrix
multiplication; “OutPro” represents outer product
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G¼ABT
a ¼ Asoftmax b1

� �T
,…,Asoftmax bm

� �Th i
, ð1Þ

Z¼GVa ¼ Gsoftmax v1ð Þ,…,Gsoftmax vdhwð Þ½ �: ð2Þ

In the original implementation (Chen et al., 2018), Z is fed into another

convolutional layer to expand the number of channels and then

encoded back to input X via element-wise addition. By contrast, we

(Figure 2) remove the extra convolutional layer that projects the rep-

resentation back into the input space. The final output of the A2-block

is generated by encoding Z back to A via element-wise addition. This

modification results in fewer parameters and less complexity of the

block and further reduces the number of parameters in the last classi-

fier. Given the numbers of output channels of the block's three con-

volutional layers (i.e., m) and the backbone network (i.e., 128), the

number of parameters within the modified A2-block is calculated by

128�3�m.

On top of the backbone network, we use two modified A2-blocks

in a parallel structure (Figure 1) to construct the pA-blocks. The pA-

blocks are initialized independently and trained jointly. We use n to

represent the number of output channels of the second block. The

network's capacity is increased by pA-blocks attending to different

representation subspaces. Then, we investigate the network's ability

to capture various spatial interactions by setting pA-blocks in a sym-

metric structure with the same numbers of output channels

(i.e., m = n) or in an asymmetric structure with different numbers of

output channels (i.e., m ≠ n). The asymmetrically parallel structure

provides a unique solution space and is expected to further enhance

the network's representation power.

2.1.3 | Bilinear pooling

Global average pooling is an aggressive information gathering

approach, which fails to capture complex interactions, especially

when the network is shallow. We use bilinear pooling to fuse the

features learned by the previous pA-blocks. Bilinear pooling can

capture pairwise correlations between feature channels and model

part-feature interactions (Lin, RoyChowdhury, & Maji, 2015). In

brief, we use outer product to multiply the feature maps of the pA-

blocks at each location and pool across locations. Note that no

priors of discriminative locations are needed when using the bilin-

ear model.

Specifically, U ¼ u1,…,udhw½ ��ℝm�dhw and Ω¼ ω,…,ωdhw½ ��ℝn�dhw

are the two activated feature maps, where m,n are the output channels.

Bilinear combinations of features across all locations are then aggre-

gated using sum pooling to obtain a global image representation Φ:

Φ¼
Xdhw
l

bilinear l,U ,Ωð Þ¼
Xdhw
l

ulωl
T : ð3Þ

The bilinear feature Φ� ℝm�n is an orderless representation since

the feature locations are ignored. Following Lin et al. (2015), the

feature Φ is passed through a signed square root followed by l2 nor-

malization. The normalized bilinear feature Φb is then flattened into a

vector, followed by a dropout layer (Srivastava, Hinton, Krizhevsky,

Sutskever, & Salakhutdinov, 2014). Finally, a fully connected layer

with two output units is applied as a linear classifier.

2.2 | Implementation

We next introduce the data augmentation procedure, training objec-

tive, transfer learning, and visual interpretation methods.

2.2.1 | Data augmentation

While random cropping is routinely used for data augmentation in

deep learning, it is wasteful to shift the brains after nonlinear registra-

tion. In addition, most data augmentation methods significantly

increase the computational cost, which is even worse when dealing

with 3D data. We instead use mixup (Zhang, Cisse, Dauphin, & Lopez-

Paz, 2017), a simple learning principle, to train the deep learning

model on convex combinations of pairs of examples and their labels.

Mixup regularizes the neural network to favor simple linear behavior

between training examples. This linear behavior increases the general-

ization of the model for predicting outside the training examples.

Formally:

ex¼ λxiþ 1�λð Þxj, ð4Þ

ey¼ λyiþ 1�λð Þyj, ð5Þ

where λ ~Beta α,αð Þ for α� 0,∞ð Þ, and λ� 0,1½ �: xi,yið Þ and xj,yj
� �

are

two data-target vectors drawn randomly from the training data. Spe-

cifically, yi and yj represent the one-hot label encodings. After aug-

mentation, ex,eyð Þ are used for training. In our implementation, mixup is

applied to each mini-batch after circularly shifting the elements within

the mini-batch. The hyper-parameter α controls the strength of inter-

polation between data-target pairs and is empirically set to 0.4. All the

training samples are augmented on-the-fly using mixup.

2.2.2 | Training objective

Softmax is used to normalize the output activations to class probabili-

ties. We use binary cross-entropy as the training objective. The loss

function is given as:

L ex,ey;θð Þ¼
X1
c¼0

LCE pθ by¼ c exj Þ,eyð Þð �þ μ

2

X
θ2,

h
ð6Þ

where ex,eyð Þ represents the augmented data-target pair. The first term

is the cross-entropy loss, and the second term is the l2 regularization.

When testing, actual data-target pairs are used.
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2.2.3 | Transfer learning

Because the structural changes in MCI brains are subtle, the predic-

tion of MCI conversion represents a more challenging task than AD

classification. Considering AD classification and MCI conversion pre-

diction are highly correlated, the knowledge learned from AD classifi-

cation is beneficial to predict MCI conversion. We initialize the

prediction model with pre-trained weights of the AD classification

model. By feeding data samples from pMCI and sMCI, the fully con-

nected layer and the pA-blocks are fine-tuned while the weights of all

the previous layers are fixed.

2.2.4 | Visual interpretation

We use score class activation mapping (score-CAM; Wang

et al., 2020) to visualize the discriminative areas where the network

focused on. Score-CAM is a general technique applicable to a wide

range of CNN models without the need for network architectural

changes. The heat maps are obtained by a linear combination of acti-

vation maps and weights, which are forward passing scores on target

class. In practice, we feed an image into the fully trained network and

use the feature maps output by the pA-blocks to generate two differ-

ent 3D heat maps. Then, the heat maps are upscaled to the same size

as the input image.

3 | EXPERIMENTS

We first introduce the sMRI dataset and the image preprocessing

pipeline. Next, we introduce the experimental settings and report the

diagnostic results achieved with different network architectures. We

then evaluate the influence of training data partitioning on diagnostic

performance. We also present the results of MCI conversion predic-

tion. Finally, the heat maps that highlight discriminative regions are

presented and analyzed.

3.1 | Dataset and image pre-processing

The sMRI data were downloaded from ADNI (adni.loni.usc.edu). Inves-

tigators within the ADNI contributed to the design and implementa-

tion of ADNI and/or provided data but did not participate in analysis

or writing of this report. A complete listing of ADNI investigators can

be found online.1 We obtained data from two public datasets, ADNI-1

and ADNI-2. It is worth noting that all subjects in ADNI-2 were newly

enrolled, so no subjects appeared in both datasets. Only baseline

images were used in this study. The demographic information of the

subjects is presented in Table 1. There are two tasks, AD classification

and MCI conversion prediction, considered in this study: AD classifi-

cation refers to identifying AD from normal controls (AD vs. NC); MCI

conversion prediction refers to classification between pMCI and sMCI

(pMCI vs. sMCI) using baseline sMRI images.

ADNI-1: The baseline ADNI-1 dataset used in this study con-

sisted of 1.5 T T1-weighted MRI images scanned from 763 subjects.

According to standard clinical criteria, subjects were divided into three

groups: normal control (NC), MCI, and AD. According to whether MCI

subjects converted to AD within 36 months, MCI subjects were fur-

ther categorized into (a) stable MCI (sMCI) subjects, who were diag-

nosed as MCI at all available time points (0–48 months) and

(b) progressive MCI (pMCI) subjects, who developed AD within

36 months after the baseline evaluation. pMCI subjects who finally

reverted to MCI or NC were excluded. The dataset contained

222 NC, 192 sMCI, 156 pMCI, and 193 AD subjects.

ADNI-2: The baseline ADNI-2 dataset contained 3 T T1-weighted

MRI images scanned from 577 subjects. The same clinical criteria as in

ADNI-1 were used to separate the subjects into 172 NC, 209 sMCI,

41 pMCI, and 155 AD subjects.

All T1-weighted images were pre-processed using FSL's anatomi-

cal processing pipeline2 (Jenkinson, Beckmann, Behrens, Woolrich, &

Smith, 2012). First, all images were reoriented to the standard space

(Montreal Neurological Institute [MNI]) and automatically cropped

before bias-field correction. Next, the corrected images were regis-

tered nonlinearly using the MNI T1 template (Grabner et al., 2006).

Then, the skull was stripped using the FNIRT-based approach

(Jenkinson et al., 2012), and the brain-extracted images were

regenerated to a standard space of size 182 � 218 � 182. Processed

images had an identical spatial resolution (1 mm � 1 mm � 1 mm). To

further reduce redundant computational cost, each image was

cropped to 144 � 176 � 144. The 3D images were standardized with

zero mean and unit variance before feeding into the network. Pre-

processed images were manually checked, and the images with insuf-

ficient stereotaxic registration and insufficient skull stripping were

excluded.

3.2 | Experimental settings

The proposed framework was built on the basis of DLTK (Pawlowski

et al., 2017), a neural network toolkit built with TensorFlow (https://

www.tensorflow.org). Experiments were run on a single GPU (NVIDIA

GTX TITAN XP 12 GB). The AdamW optimizer (Loshchilov &

Hutter, 2017) was used for training with a learning rate of 3e-5 and

for fine-tuning with a learning rate of 3e-6. The weight decay of the

optimizer was set to 5e-4. Dropout with rate 0.2 was activated. The

size of the mini-batch was 6; 10% of the training samples were ran-

domly selected for validation. The best performing model was saved

according to inference performance on the hold-out validation

dataset. For the classification task, we trained the network for

60 epochs, which took around 105 min. For the prediction task, the

model trained for classification was further fine-tuned for 10 epochs,

which took around 12 min. For evaluation, only 0.05 s was required

to generate the diagnosis for one subject with the trained or fine-

tuned model.

The proposed method was validated for both AD classification

and MCI conversion prediction. The evaluation metrics included
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accuracy (ACC), sensitivity (SEN), specificity (SPE), and area under

receiver operating characteristic curve (AUC). Specifically, SEN repre-

sented the ratio of correctly identified AD/pMCI subjects; SPE repre-

sented the ratio of correctly identified NC/sMCI subjects, and the

AUC was calculated based on all possible pairs of SEN and 1-SPE,

which were obtained by changing the thresholds for the classification

probabilities. All the results reported were the averages of five runs.

We implemented the method in Korolev et al. (2017) and the

method in Lian et al. (2018) and evaluated them with the same dataset

as we used. The complete network in Lian et al. (2018) required

predefined landmarks as the prior knowledge, which was not available

for us. To keep the same experimental settings, we implemented the

no-prior version of the network in Lian et al. (2018) (nH-FCN) by

directly partitioning the nonlinearly aligned MRIs into multiple non-

overlapped patches.

3.3 | Diagnostic performance

We first set the numbers of output channels of pA-blocks to 1/4 input

channels (i.e., m = n = 32). This model was denoted as the symmetric

model (Table 2.e). As a comparison, we evaluated a model using the

original A2-block in Chen et al. (2018) with a symmetrically parallel

structure (Table 2.d). To study the proposed asymmetric structure, the

asymmetric model (Table 2.g) was constructed by setting different

output channels of pA-blocks (i.e., m = 32, n = 64). By contrast, we

implemented a model (Table 2.f) with similar capacities to the asym-

metric model by changing the output channels (m = 48, n = 48) of the

symmetric model.

In addition, we evaluated the models with different architectures

to study the effectiveness of each component. For all of the evaluated

models, the same backbone network was used. The baseline model

(Table 2.a) was built with the backbone network followed by a global

average pooling layer, a dropout layer, a fully connected layer, and a

linear classifier. Next, we explored the model with a single A2-block

followed by global average pooling (Table 2.b). The last model was

built by replacing the above global average pooling with bilinear

pooling (Table 2.c). The classification results are presented in Table 2.

The model with asymmetric pA-blocks achieved the overall best

performance (Table 2.g). Compared with the model with symmetric

pA-blocks (Table 2.e), the asymmetric model (Table 2.g) increased clas-

sification accuracy by 1.04% and sensitivity by 2.19%. This

TABLE 1 Demographic
characteristics of the studied subjects

Dataset Category Gender (F/M) Age (±SD) Education (±SD) MMSE (±SD)

ADNI-1 NC 110/112 76.0 ± 4.9 15.9 ± 2.9 29.1 ± 1.0

sMCI 69/123 74.7 ± 7.5 15.6 ± 3.2 27.3 ± 1.8

pMCI 66/90 74.5 ± 6.9 15.8 ± 2.9 26.7 ± 1.7

AD 97/96 75.7 ± 7.7 14.7 ± 3.2 23.3 ± 2.1

ADNI-2 NC 95/77 72.9 ± 6.1 16.6 ± 2.6 29.1 ± 1.2

sMCI 95/114 71.5 ± 7.3 16.3 ± 2.7 28.2 ± 1.7

pMCI 19/22 71.8 ± 7.2 15.9 ± 3.4 26.8 ± 1.7

AD 66/89 74.9 ± 8.0 15.8 ± 2.9 23.1 ± 2.1

Abbreviations: MMSE, mini-mental state examination; NC, normal control; pMCI, progressive MCI; sMCI,

stable mild cognitive impairment (MCI; Folstein, Folstein, & McHugh, 1975).

TABLE 2 Results for AD classification (AD vs. NC) using baseline sMRI. The models were trained on the ADNI-1 dataset and evaluated on the
ADNI-2 dataset

Model Params ACC � 100% (std.) SEN � 100% (std.) SPE � 100% (std.) AUC (std.)

3D ResNet† (Korolev et al., 2017) 3.2011 M 84.10 (0.33)* 76.13 (2.97)* 91.28 (2.27) 0.9209 (0.0051)*

nH-FCN† (Lian et al., 2018) 3.1286 M 86.36 (0.24)* 85.94 (1.49)* 86.75 (1.78)* 0.9255 (0.0024)*

a. BB + GAP 0.7103 M 76.94 (0.63)* 70.32 (4.72)* 82.91 (4.54)* 0.8384 (0.0073)*

b. BB + 1 � A2-block + GAP 0.7224 M 88.13 (1.12)* 84.26 (2.99)* 91.63 (1.86) 0.9293 (0.0062)

c. BB + 1 � A2-block + Bili 0.7244 M 88.62 (0.49)* 84.26 (1.94)* 92.56 (1.35) 0.9291 (0.0037)*

d. BB + 2 � A2-block + Bili 0.7756 M 88.81 (0.37)* 85.42 (2.02)* 91.86 (1.33) 0.9271 (0.0044)*

e. BB + pA-blocks (S) + Bili 0.7367 M 89.66 (0.23)* 86.58 (1.25)* 92.44 (0.97) 0.9303 (0.0076)

f. BB + pA-blocks (S-48) + Bili 0.7515 M 88.93 (0.94)* 84.39 (2.78)* 93.02 (0.97) 0.9282 (0.0035)*

g. BB + pA-blocks (A) + Bili 0.7510 M 90.70 (0.37) 88.77 (1.20) 92.44 (1.22) 0.9358 (0.0049)

Notes: “BB” refers to the backbone network; “GAP” refers to global average pooling; “Bili” refers to bilinear pooling; “(S-48)” refers to the symmetric pA-

blocks with 48 output channels; “(S)” refers to the symmetric pA-blocks with 32 output channels; “(A)” refers to the asymmetric pA-blocks. “Params”
refers to the number of parameters (weights, in millions); “std.” refers to standard deviation.

*Significantly different from the non-bold values (p <.05, t-test).
†Implemented from scratch and tested under the same experimental settings.
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demonstrated that the asymmetrically parallel structure provides

unique solution spaces, in which the model could attend on various

spatial interactions and enhance the network's representation power.

The symmetric model may be suboptimal since the model does not

explore the space of solutions arising from different attention mod-

ules. In addition, the asymmetric model has slightly more parameters

than the symmetric model in the fully connected layer, thus equipping

the asymmetric model with more discriminative capacity. Further-

more, the asymmetric model achieved a sensitivity value close to

90%, suggesting that the model might be applicable for early screen-

ing since it rarely missed subjects with disease. The asymmetric model

also achieved more balanced sensitivity and specificity, further

supporting that the proposed framework could be applied to clinical

practice.

Introducing the A2-block significantly improved performance. Com-

pared with the baseline model (Table 2.a), the model with one A2-block

(Table 2.b) had an 11% increase in accuracy. The global features learned

by the A2-block appeared to be effective for classification. The model

with a combination of A2-block and bilinear pooling (Table 2.c) achieved

better accuracy and specificity than the model with a combination of A2

-block and global average pooling (Table 2.b). The effectiveness of bilin-

ear pooling could be a result of the computed second-order statistics,

which captured more complex interactions compared with the first-

order statistics computed by average pooling (Lin, RoyChowdhury, &

Maji, 2018). Furthermore, the models with the pA-blocks (Table 2.e/f/g)

achieved better accuracy, suggesting that the models' capacity was

increased by these parallel blocks attending to different representation

subspaces. The symmetric model using the original A2-blocks (Chen

et al., 2018; Table 2.d) had more capacities but poor results than our

symmetric model (Table 2.e). This implies that the proposed method has

superiority in reducing the model's parameters while improving the

model's performance.

Compared with the 3D ResNet in Korolev et al. (2017) and

nH-FCN in Lian et al. (2018), our methods achieved better results. In

addition, our 3D models were lightweight. The asymmetric model

comprised 0.751 million parameters (see Table 2.g), which are orders

of magnitude lower than the 3D CNNs like C3D (Tran, Bourdev,

Fergus, Torresani, & Paluri, 2015), the popular 2D deep learning

models such as inception (Szegedy et al., 2015), and the original

ResNet (He et al., 2016a). This was achieved by replacing some of 3D

convolutional kernels to 1 � 1 � 1 kernels and by introducing effi-

cient pA-blocks rather than stacking more layers.

3.4 | Influence of data partition

To study the generalization ability of the proposed method, the train-

ing data and test data were exchanged. Specifically, we trained the

network on ADNI-2 and tested it on ADNI-1 for AD classification.

Both the symmetric model and the asymmetric model were evaluated.

The classification results are presented in Table 3.

The symmetric model achieved an accuracy of 86.84%, and the

asymmetric model achieved a better accuracy of 87.18% and a signifi-

cantly higher sensitivity of 89.02%. The asymmetric model again

achieved better performances than the symmetric model. Compared

with the 3D ResNet in Korolev et al. (2017) and nH-FCN in Lian

et al. (2018) (see Table 3), our methods achieved better results. Com-

pared with Table 2, the model trained on ADNI-1 achieved better per-

formance than the model trained on ADNI-2, perhaps because there

were more training samples in ADNI-1 than in ADNI-2 (415 scans

vs. 327 scans). It worth noting that no priors but only labels were used

to train the models. The proposed method shows good generalizability

in sMRI-based AD diagnosis.

3.5 | MCI conversion prediction

To evaluate the effectiveness of the framework for MCI conversion

prediction, we: (a) trained the models from scratch, (b) fine-tuned the

last fully connected (FC) layer, and (c) and fine-tuned both the pA-

blocks and the FC layer of the pre-trained AD classification model.

Because the MCI subjects in ADNI-2 are unbalanced, it would be diffi-

cult to train a valid prediction model. Following Lian et al. (2018), we

only trained the models using ADNI-1 and then tested them on

ADNI-2. The MCI conversion prediction results are presented in

Table 4.

The asymmetric model with both pA-blocks and FC layer fine-

tuned (Table 4.f) achieved the best classification accuracy of 79.28%

TABLE 3 Results for AD
classification (AD vs. NC) on the ADNI-1
dataset, with the models trained on the
ADNI-2 dataset

Model
ACC � 100%
(std.)

SEN � 100%
(std.)

SPE � 100%
(std.) AUC (std.)

3D ResNet† (Korolev

et al., 2017)

77.59 (0.97)* 81.76 (1.68)* 73.96 (2.91)* 0.8627 (0.0127)*

nH-FCN† (Lian

et al., 2018)

84.05 (0.78)* 87.05 (2.15) 81.44 (2.47)* 0.9088 (0.0019)*

BB + pA-blocks (S) + Bili 86.84 (0.45) 84.97 (1.35)* 88.47 (1.81) 0.9209 (0.0054)

BB + pA-blocks (A) + Bili 87.18 (0.63) 89.02 (2.52) 85.59 (1.61)* 0.9265 (0.0046)

Notes: “BB” refers to the backbone network; “Bili” refers to bilinear pooling; “(S)” refers to the symmetric

pA-blocks; “(A)” refers to the asymmetric pA-blocks; “std.” refers to standard deviation.

*Significantly different from the non-bold values (p < .05, t-test).
†Implemented from scratch and tested under the same experimental settings.
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and the highest AUC of 0.7761. Considering that the MCI brains have

diffusely distributed structural changes, spatial correlations might con-

tribute to the prediction. Our model can learn both long-range spatial

correlations and localized feature interactions, thus enabling more

fine-grained identification. Compared with the models trained from

scratch (Table 4.a/b), the models with only the FC layer fine-tuned

(Table 4.c/d) performed better. By fine-tuning the models for AD

diagnosis, AD-related patterns were leveraged for MCI conversion

prediction. Compared with the 3D ResNet in Korolev et al. (2017))

and nH-FCN in Lian et al. (2018), both were trained by transferring

the network parameters learned for AD classification, and our method

(Table 4.f) achieved better results. In addition, the model with both

pA-blocks and FC layer fine-tuned (Table 4.f) achieved higher accu-

racy, specificity, and AUC values than the models with only the FC

layer fine-tuned (Table 4.c/d). This suggests that the AD and MCI

brains have close but not identical spatial atrophy patterns. Fine-

tuning the pA-blocks forces the network to capture different spatial

correlations to better discriminate pMCI from sMCI.

3.6 | Visual interpretation analysis

To investigate the areas that the network focused to discriminate

samples, we used score-CAM to generate heat maps. The heat maps

generated with the feature maps outputted by the pA-blocks were

denoted CAM_pA1 and CAM_pA2, respectively. The subject-specific

heat maps for AD classification and MCI conversion prediction are

presented in Figures 3 and 4, respectively. Specifically, the discriminative

TABLE 4 Results for MCI conversion prediction (pMCI vs. sMCI) using baseline sMRI

Model ACC � 100% (std.) SEN � 100% (std.) SPE � 100% (std.) AUC (std.)

a. BB + pA-blocks (S) + Bili (scratch) 73.92 (1.46)* 48.78 (9.51)* 78.85 (3.12)* 0.6991 (0.0063)*

b. BB + pA-blocks (A) + Bili (scratch) 74.96 (2.72)* 52.19 (10.9) 79.43 (5.13)* 0.7139 (0.0142)*

c. BB + pA-blocks (S) + Bili (FC) 76.32 (0.16)* 54.64 (1.20)* 80.57 (0.24)* 0.7493 (0.0009)*

d. BB + pA-blocks (A) + Bili (FC) 75.04 (0.32)* 59.52 (1.20) 78.09 (0.47)* 0.7750 (0.0003)*

3D ResNet† (Korolev et al., 2017) 79.12 (0.69) 43.90 (3.45)* 86.03 (0.82) 0.7240 (0.0118)*

nH-FCN† (Lian et al., 2018) 78.48 (0.64) 52.20 (2.49)* 83.64 (1.06)* 0.7620 (0.0067)*

e. BB + pA-blocks (S) + Bili (pA + FC) 77.36 (0.60)* 53.17 (0.98)* 82.11 (0.78)* 0.7471 (0.0024)*

f. BB + pA-blocks (A) + Bili (pA + FC) 79.28 (0.59) 54.64 (1.20)* 84.12 (0.93)* 0.7761 (0.0005)

Notes: “BB” refers to the backbone network; “Bili” refers to bilinear pooling; “(S)” refers to the symmetric pA-blocks; “(A)” refers to the asymmetric pA-

blocks; “std.” refers to standard deviation; “(scratch)” refers to the models trained from scratch; “(FC)” refers to the AD classification models with the last

fully connected (FC) layer fine-tuned; “(pA + FC)” refers to the AD classification models with both the pA-blocks and the FC layer fine-tuned.

*Significantly different from the non-bold values (p < .05, t-test).
†Implemented from scratch and tested under the same experimental settings.

F IGURE 3 Heat maps highlighting discriminative regions of AD classification (subjects with AD). The rows correspond to heat maps
generated using different feature maps. The areas with warmer colors have higher discriminative contributions
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regions identified with different feature maps are highlighted in the first

and second row. The columns denoted the views in three anatomical

planes.

Figure 3 shows similar discriminative regions across different AD

subjects. The highlighted regions including hippocampus, amygdala,

ventricle, frontal lobe, inferior temporal gyrus, superior temporal sul-

cus, parieto-occipital sulcus, and Sylvian fissure are known to contrib-

ute to AD diagnosis (Convit et al., 2000; Ewers et al., 2011; Migliaccio

et al., 2015; Scheff, Price, Schmitt, Scheff, & Mufson, 2011). Figure 4

shows the discriminative regions for MCI conversion prediction. The

highlighted regions for AD and MCI subject are generally consistent.

Anterior cingulate cortex, an early sign of AD (Amanzio et al., 2011),

was also highlighted for some subjects. The visualizations suggest that

the network is able to learn discriminative and subject-specific fea-

tures from MRI. In addition, the heat maps generated by different fea-

ture maps highlighted similar regions, while with different degrees of

emphasis. This demonstrates that the pA-blocks can attend to differ-

ent correlations and capture enriched features.

4 | DISCUSSION

In this study, we presented a novel end-to-end deep learning frame-

work for AD classification and MCI conversion prediction. The frame-

work did not require any prior knowledge as guidance for training.

Experiments demonstrated our proposed method's effectiveness in

extracting AD-related features in sMRI images.

4.1 | Comparison with previous work

We compared the proposed method's performance with other sMRI-

based CAD methods. Considering the utilization of different datasets

because of subject selection criteria, sMRI preprocessing failure, and

dataset partitioning, a fair comparison of these methods was impossi-

ble. However, the comparison still allowed us to make some interesting

observations. In Table 5, we briefly summarize several state-of-the-art

results on AD classification and MCI-to-AD prediction using conven-

tional machine learning or deep learning methods. It worth noting that

only the results derived from sMRI are listed in the table.

Most previous methods utilized a separated classifier to learn

manually engineered features (Eskildsen et al., 2013; Liu et al., 2016;

Moradi et al., 2015; Zhang et al., 2016). Feature extraction in these

methods required either expertise regarding regions of interest or a

time-consuming process with respect to whole-brain image intensi-

ties. Also, the separation of the feature extraction stage and classifier

construction stage could compromise performance. By contrast, our

method utilized CNNs to jointly build the feature extractor and classi-

fier. Direct feature learning from sMRI improved the diagnostic per-

formance with higher efficiency.

Some methods partially utilized neural networks (Lin, Tong,

et al., 2018; Suk et al., 2014) by leveraging neural networks as a high-

level feature extractor and designing complicated classifiers to further

process features extracted by the neural networks. In our study, a simple

linear classifier on top of the neural network achieved good perfor-

mance. This suggests that our method is able to effectively learn long-

range correlations and complexly localized patterns from image data.

The deep learning methods in Lian et al. (2018) and Liu et al. (2018)

required extra location proposals or detected landmarks to guide feature

extraction. The location proposal and landmark detection modules were

isolated from the main neural network and were highly dependent on

feature engineering. By contrast, our proposed method was trained in an

end-to-end manner with only images as input and image labels as the

output. Also, because of the computationally inefficient location pro-

posal module, the methods in Lian et al. (2018) and Liu et al. (2018)

required 27 and 14 hr to train the network, respectively (both used a

F IGURE 4 Heat maps highlighting discriminative regions of MCI conversion prediction (subjects with pMCI). The rows correspond to heat
maps generated using different feature maps. The areas with warmer colors have higher discriminative contributions
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single GPU, that is, NVIDIA GTX TITAN 12 GB). Our method using

whole-brain MRIs was much more efficient, costing only 105 min for

training. The method in Lian et al. (2018) was required to train an extra

network with a structure different from the main network for generating

heat maps of discriminative areas, while our framework can easily gener-

ate the heat maps without the need of changing the main network or

training an extra network.

Compared with the CNN-based methods that allow end-to-end

training (Khvostikov et al., 2018; Korolev et al., 2017; Spasov et al., 2019),

our method achieved better classification performance. This suggests that

our method captures more informative features related to dementia. Fur-

thermore, we evaluated our proposed framework in a strict setting. The

network was trained and evaluated on two independent datasets

(ADNI-1 and ADNI-2). This evaluation protocol was more challenging but

ensured the effectiveness of the proposed frameworks.

Considering the risk of introducing subject duplication, that is, mul-

tiple scans from one subject appearing in both the training and test sets,

we used only one baseline scan of each subject to train and evaluate

the network; 3D sMRI volume was directly fed into the network. In

addition, the MRI images in the training and test sets had a different

signal-to-noise ratio (i.e., 1.5 T and 3 T scanners). The model learned by

the proposed framework can still reliably distinguish different diagnostic

groups. We also showed the models' extents of overfitting by evaluat-

ing the trained models on the training dataset. The detailed discussion

about overfitting was presented in the Supplementary Materials.

4.2 | Limitations and future work

Although the proposed framework achieved competitive diagnostic

results, there is still room for improvement. First, we plan to utilize

multimodal data to improve the current framework. Besides sMRI,

functional imaging can help with disease diagnosis and biomarker dis-

covery (Li, Yang, Lei, Liu, & Wee, 2019; Yu et al., 2019; Zhang

et al., 2019). Some other studies utilized multimodal data for CAD or

cognition prediction and achieved good performance (Liu et al., 2015,

2017; Peng, Zhu, Wang, An, & Shen, 2019; Wang, Liu, & Shen, 2019;

Zhu et al., 2019). We could further study using multimodal neuroim-

aging combinations. Second, the generated heat maps only highlighted

discriminative regions, and this interpretation is still too coarse to sup-

port clinical decision-making. We aim to generate human-comprehensible

and fine-grained visual attribution maps of disease effects, thereby taking

a step closer toward CAD. To the end, we trained and evaluated our

methods on two independent datasets, which were relatively large com-

pared with those used in other CAD studies (see Table 5). However, fur-

ther experiments are needed to evaluate the effectiveness of the

framework in a larger population.

5 | CONCLUSION

In this study, we developed an efficient deep neural network frame-

work for AD diagnosis and MCI conversion prediction. Using the

asymmetrically parallel structure, the proposed framework directly

extracted global and local features in 3D sMRIs without extra guid-

ance. The framework was lightweight and fast to train. Furthermore,

we generated heat maps of disease-related regions to aid visual inter-

pretation. The proposed framework was evaluated on two public

datasets with 1,340 subjects. The diagnostic performance was com-

petitive with other state-of-the-art methods, which require medical

priors or stepwise training procedures.
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